1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz
NO musical instrument produces a 'pure' tone with only a
single frequency in it.
EVERY instrument produces more or less harmonics (multiples)
in addition to the basic frequency it's playing.
The percussion instruments (drums etc) are the richest producers
of bunches of different frequencies.
Fuzzy electric guitars are next richest.
The strings and brass instruments are moderate producers of
harmonics ... I can't remember which is greater than the other.
Then come the woodwinds ... clarinet, oboe, etc.
The closest to 'pure' tones of single frequency are the sounds
made by the flute and piccolo, but even these are far from 'pure'.
The only way to get a true single-frequency sound is from an
electronic 'sine wave' generator.
Answer:
10g
Explanation:
As the Law of Conservation of Mass states that " Mass can neither be created nor be destroyed in a chemical reaction".
Though melting of tin isn't a chemical change, the same logic is applied here...
Hence,
The mass of tin will be 10 g itself...
Speed is v = d/t
Or speed is distance over time
So...
40min / 60min = 0.6667 or 2/3 --> Finding what proportion 40 minutes is to an hour or 60 minutes as we need the units of hours to match up
45km/h = d/0.6667h
d = (45)(0.667)
d = 30.0015 or 30km
The answer would be 54 m/s as the maximum speed