Answer:
The gravity on this planet is stronger than that of earth.
Explanation:
First we need to find the acceleration due to gravity value of this planet to compare its gravity force with that of the earth. Hence, we will use second equation of motion:
h = Vi t + (0.5)gt²
where,
h = height or depth of crater = 100 m
Vi = Initial Velocity of rock = 0 m/s
t = time = 4 s
g = acceleration due to gravity on this planet = ?
Therefore,
100 m = (0 m/s)(4 s) + (0.5)(g)(4 s)²
g = (200 m)/(16 s²)
g = 12.5 m/s²
on earth:
ge = 9.8 m/s²
Since,
ge < g
Therefore,
<u>The gravity on this planet is stronger than that of earth.</u>
Answer:

Explanation:
The relative velocity can be calculated by means of the difference between vector B minus vector A.

For this question we should apply
a = v^2 - u^2 by t
a = 69 - 0 by 4.5
a = 69 by 4.5
a = 15.33
a = 6.85 m/s^2
If the answer in option is near to answer then , you can mark it as correct.
.:. The acceleration is 6.9 m/s^2
Answer:
hufiui
fihgpfghlfikgergkfkjhfkhjgkffhhh
Explanation:
jjgzgcjxhgygueyuufhfugkhkckgijljhgxjgjgffhgkgjxhxjgjcjckvjgghkhkgjgjfhfhfhffrusufsflslrsyfhldufñlñudtoqdyhjjxkgsgjfktwlyfñujxjxhlxlhdktstedoyñfuyñflldytidoyeyljjcñcjluffñui5woyepurñfuñufldyrajuñdlydstdyñudñydktshñxjcñydiw5uñfitwoyeoyeñufñfuñifjñufhlsyñeifññydoysitaiwtuñdyñdlsyltslsyoyeylsuñdñjjcyldlyslatlysñudidñjdñfjñjjxlhsmzhmzjjdjdlhdñhjdñjdñjddñhflhuñfhxltkds4urayraylraluarularuñstuñtsuñtsultsuñtsuñstñitsñktssistustlulsrustlularyralultalutslutajltsñgskjlgzljg?g o uguhxputxipyfugxiñhxiñhfuñdguldthgksjmgdjmgkhdjlgdjlgd
pduoyditsyafylrayoraourauptautospustistiptsñitsñitsñitsiptsiteitdustuñtsuñtsñitwiñstñitwñitsñstuuñrsoursurosoustjlsrlutejlgsjlstjfsjlgsultsjgzjñgsññkdylfhkñdgjlfshkadmjgsuñstñkydñkydñiykdhiñstñitsuñtsisñtñtieñietñietñiteñiwtñitskñgsiñteuñwrkñsturaluglsuñtwjlfalfjalhadoyfutdllgdñitswtkgsñktjrajtsurwñwñutiñtsiwñtuwñturqlñitwualtayoryarluarlietite