Answer:
im pretty sure its the second one
Answer:
Elements in the same period have same number of electronic shell and electron is increased by one in every coming element with in same electronic shell.
Explanation:
Consider the second period of periodic table. This period consist of eight elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon.
Electronic configuration of lithium:
Li₃ = [He] 2s¹
Electronic configuration of beryllium:
Be₄ = [He] 2s²
Electronic configuration of boron:
B₅ = [He] 2s² 2p¹
Electronic configuration of carbon:
C₆ = [He] 2s² 2p²
Electronic configuration of nitrogen:
N₇ = [He] 2s² 2p³
Electronic configuration of oxygen:
O₈ = [He] 2s² 2p⁴
Electronic configuration of fluorine:
F₉ = [He] 2s² 2p⁵
Electronic configuration of neon:
Ne₁₀ = [He] 2s² 2p⁶
All these elements present in same period having same electronic shell and number of electron increased by 1.
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g
Answer:
Titrations. Because a noticeable pH change occurs near the equivalence point of acid-base titrations, an indicator can be used to signal the end of a titration. When selecting an indicator for acid-base titrations, choose an indicator whose pH range falls within the pH change of the reaction.
Hope it helped!!