X should be 7 after doing all the calculation.
P(A|B)<span>P(A intersect B) = 0.2 = P( B intersect A)
</span>A) P(A intersect B) = <span>P(A|B)*P(B)
Replacing the known vallues:
0.2=</span><span>P(A|B)*0.5
Solving for </span><span>P(A|B):
0.2/0.5=</span><span>P(A|B)*0.5/0.5
0.4=</span><span>P(A|B)
</span><span>P(A|B)=0.4
</span>
B) P(B intersect A) = P(B|A)*P(A)
Replacing the known vallues:
0.2=P(B|A)*0.6
Solving for P(B|A):
0.2/0.6=P(B|A)*0.6/0.6
2/6=P(B|A)
1/3=P(B|A)
P(B|A)=1/3
B, $5.10x (it doesnt give you the ammount of games he played so x represents it) + $16.97 (the cost he payed to get in)
Answer:
x = 1 + i sqrt(7/2) or x = 1 - i sqrt(7/2)
Step-by-step explanation:
Solve for x:
2 x^2 - 4 x + 9 = 0
Divide both sides by 2:
x^2 - 2 x + 9/2 = 0
Subtract 9/2 from both sides:
x^2 - 2 x = -9/2
Add 1 to both sides:
x^2 - 2 x + 1 = -7/2
Write the left hand side as a square:
(x - 1)^2 = -7/2
Take the square root of both sides:
x - 1 = i sqrt(7/2) or x - 1 = -i sqrt(7/2)
Add 1 to both sides:
x = 1 + i sqrt(7/2) or x - 1 = -i sqrt(7/2)
Add 1 to both sides:
Answer: x = 1 + i sqrt(7/2) or x = 1 - i sqrt(7/2)