5+4❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Yes it determine the length
Answer:
C. 8
Step-by-step explanation:
![\because \: {s}^{3} = 64 \\ s = \sqrt[3]{64} \\ s = 4 \\ side \: of \: cube = 4 \: units \\ when \: side \: is \: halved \\ new \: side \: length = \frac{4}{2} = 2 \\ \: new \: volume = {2}^{3} = 8 \: cubic \: units](https://tex.z-dn.net/?f=%20%5Cbecause%20%5C%3A%20%20%7Bs%7D%5E%7B3%7D%20%20%3D%2064%20%5C%5C%20s%20%3D%20%20%5Csqrt%5B3%5D%7B64%7D%20%20%5C%5C%20s%20%3D%204%20%5C%5C%20side%20%5C%3A%20of%20%5C%3A%20cube%20%3D%204%20%5C%3A%20units%20%5C%5C%20when%20%5C%3A%20side%20%5C%3A%20is%20%5C%3A%20halved%20%5C%5C%20new%20%5C%3A%20side%20%5C%3A%20length%20%3D%20%20%5Cfrac%7B4%7D%7B2%7D%20%20%3D%202%20%5C%5C%20%20%5C%3A%20new%20%5C%3A%20volume%20%3D%20%20%7B2%7D%5E%7B3%7D%20%20%3D%208%20%5C%3A%20cubic%20%5C%3A%20units)
Answer:
(-4, 5)
Step-by-step explanation (work shown in attached picture):
1) Since x is already isolated in the first equation, substitute that value for x into the other equation to find y. So, substitute 16-4y for the x in 3x + 4y = 8, then solve for y. This gives us y = 5.
2) Now, substitute that given value for y back into any one of the equations to find x. I chose to do it in the first equation. Substitute 5 for the y in x = 16-4y, then solve for x this time. This gives us x = -4.
Since x = -4 and y = 5, the solution is (-4, 5).