Answer: All
Explanation: A community is an assembly of one or more species that interacts with one another. However, in a community, the organisms would also interact with their environment.
Answer:
adrenaline may be the answer.
Magma seeps up along plate boundaries and forms mountains.
Factor 1 creates competition and factor 2 creates genetic variation.
Explanation:
Question 1: Magma seeps up along plate boundaries and forms mountains.
When lithospheric plates move apart they create divergent plate margin where magma seeps up along the plate boundary and forms series of mountains. The mid oceanic ridge was formed this way.
- The lithosphere lies on the weak and molten asthenosphere.
- Different plate interactions produces a wide range of plate movement.
- Along a divergent margin usually, two oceanic plates are forced to move apart.
- The forces the asthenosphere to rise through seeps as magmatic bodies.
- The rising magma them crystallizes along the margins of the plate to form mountain chains like the mid-oceanic ridge.
- It is common to find young rocks at the plate margin and the older ones away from spreading centers.
Learn more:
lithosphere brainly.com/question/9582362
Question 2: Factor 1 creates competition and factor 2 creates genetic variation.
Scarcity of space leads to competition between organisms and availability of mates creates genetic variations.
- In an ecosystem with limited space, there will pressure on available resources.
- This will lead to different organism developing strategies to efficiently adapt to their environment.
- Organisms will in turn begin to compete with one another for the limited resources.
When we have a diverse number of mating options, genetic variation occurs. This suggests that we can have different gene combination as a result of the mating organisms.
A variation in the genetic pool of a place leads to better adaptable traits to survive the environment.
learn more:
Natural selection brainly.com/question/10367884
#learnwithBrainly
Answer and Explanation:
<u>Cross:</u> aa Bb dd Ee x AA bb Dd Ee
We can calculate the probability of getting heterozygous individuals in the progeny by using the <u>product rule</u>. Assuming that these four genes <u>assort independently</u> (<em>events that occur independently from each other</em>), we can infer that the F1 will have the next genotypic proportions for each gene:
1) aa x AA
F1) 4/4=1 Aa
2) Bb x bb
F1) ½ bb
½ Bb
3) dd x Dd
F1) ½ dd
½ Dd
4) Ee x Ee
F1) ¼ EE
2/4 = ½ Ee
¼ ee
So, to know what the probability is that the F1 of being heterozygous for all loci, we must multiply the respective individual probabilities of getting a heterozygous genotype, like this:
1 Aa x ½ Bb x ½ Dd x ½ Ee = 1/8 AaBbDdEe
Answer:
The answer in B) The offspring have one allele that codes for red and one allele that codes for white.
Explanation:
Let's say that the red flower has Bb, and the white flower has bb. In a punnet square you'd get 50% being Bb and another 50% being bb. The allele bb would be pink.
I hope this helps!