Answer:
Rate of the reaction is 0.2593 M/s
-0.5186 M/s is the rate of the loss of ozone.
Explanation:
The rate of the reaction is defined as change in any one of the concentration of reactant or product per unit time.

Rate of formation of oxygen : 
Rate of the reaction(R) =![\frac{-1}{2}\frac{d[O_3]}{dt}=\frac{1}{3}\frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B2%7D%5Cfrac%7Bd%5BO_3%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
![R=\frac{1}{3}\frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
Rate of formation of oxygen=3 × (R)

Rate of the reaction(R): 
Rate of the reaction is 0.2593 M/s
Rate of disappearance of the ozone:
![R=-\frac{1}{2}\frac{d[O_3]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BO_3%5D%7D%7Bdt%7D)
![\frac{d[O_3]}{dt}=-2\times R=-2\times 0.2593\times M/s=-0.5186M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BO_3%5D%7D%7Bdt%7D%3D-2%5Ctimes%20R%3D-2%5Ctimes%200.2593%5Ctimes%20M%2Fs%3D-0.5186M%2Fs)
-0.5186 M/s is the rate of the loss of ozone.
Covalent network. <span>A solid that is extremely hard, that has a very high melting point, and that will not conduct electricity either as a solid or when molten is held together by a continuous three-dimensional network of covalent bonds. Examples include diamond, quartz (SiO </span><span>2 </span>), and silicon carbide (SiC). The electrons are constrained in pairs to a region on a line between the centers of pairs of atoms.<span>
<span /></span>
Cardiovascular and circulatory
kidneys filter thru blood to take out waste
lungs breathe in oxygen, give blood 2 circulatory to carry! takes co2 out
Answer:
Mass = 51 g
Explanation:
Given data:
Mass of nitrogen = 41.93 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 41.93 g/ 28 g/mol
Number of moles = 1.5 mol
now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
1.5 : 2/1×1.5 = 3 mol
Mass of ammonia formed:
Mass = number of moles × molar mass
Mass = 3 mol × 17 g/mol
Mass = 51 g