<u>Answer:</u> The temperature at which the food will cook is 219.14°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the temperature at which the food will cook is 219.14°C
Ernest Shackleton's South! primarily uses the writing structure of "problem and solution".
According to Dalton's Law, in a mixture of non-reacting gasses, thetotal pressure<span> exerted is the sum of the </span>partial pressures<span> of the component gasses. In more complicated circumstances, equilibrium states come into effect, but fortunately for us, </span>oxygen<span> is non-reactive with </span>water vapor<span>.</span>
Answer:
boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po) and astatine (At)
Explanation:
metalloids are elements that are in between the metals and nonmetals. they are in between because they have properties of both metals and nonmetals.
you can search "metalloids on the periodic table" and go to images to see what i mean :)
Answer:
126.8, Iodine
Explanation:
- mass ×abundance/100
- (126.9045×80.45/100)+(126.0015×17.23/100)+(128.2230×2.23/100)
- 102.1+21.7+3=126.8
<em>IODINE</em><em> </em><em>has</em><em> </em><em>an</em><em> </em><em>atomic</em><em> </em><em>mass</em><em> </em><em>of</em><em> </em>126.8 or 126.9