Answer:
Explanation:
In this case we shall calculate rate of change of flux in the coli to calculate induced emf .
Flux through the coil = no of turns x area x magnetic field perpendicular to it
=34 x 2.25 x (3.95 )²x 10⁻⁴ Weber
= 1193.4 x 10⁻⁴Weber
Final flux through the coil after turn by 90°
= 1193.4 x 10⁻⁴ cos 90 ° =0
Change of flux
= 1193.4 x 10⁻⁴ weber.
Time taken = 0.335 s .
Average emf= Rate of change of flux
= change in flux / time
=1193.4 x 10⁻⁴ / .335
= 3562.4 x 10⁻⁴
356.24 x 10⁻³
=356.24 mV.
Current induced = emf induced / resistance
= 356.24/.780
= 456.71 mA.
Answer:
A negative potential energy becomes more negative
Explanation:
Let the charges be - Q₁ and Q₂ . Let the distance between them be d .
Potential energy = k -Q₁x Q₂ / R
= - KQ₁ Q₂ / R
Now if the magnitude of R decreases , the magnitude of potential energy increases . So we see that the negative potential energy becomes more negative .
Answer:
Speed - scalar
Velocity - vector
Displacement - vector
Distance - scalar
Measurement - scalar
Measurement and direction - vector
60 m north - vector
100 m west - vector
200 m/s - scalar.
Answer:
2.75 N
Explanation:
Given that,
Box A has a mass 21.0 kg and box B has a mass 8.0 kg.
A horizontal force of 100N is exerted on box A.
Let a be the acceleration of the system. Using second law of motion,

Now applying Newton's second law to box B. So,

So, 2.75 N is the force that box A exerts on box B.
Answer:
because switch moves after a waiter
Explanation: