1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Triss [41]
3 years ago
12

With respect to the earth, object 1 is moving at speed 0.80 c to the right. Object 2 is moving in the same direction at speed 0.

80 c with respect to object 1. How fast is object 2 moving with respect to the earth?
Physics
1 answer:
viktelen [127]3 years ago
6 0

Answer:

0.976 c

Explanation:

v_{1e} = velocity of object 1 relative to earth = 0.80 c

v_{21} = velocity of object 2 relative to object 1 = 0.80 c

v_{2e} = velocity of object 2 relative to earth

Velocity of object 2 relative to earth is given as

v_{2e}= \frac{v_{1e} + v_{21}}{1 + \frac{v_{1e}v_{21}}{c^{2}}}

v_{2e}= \frac{0.80 c + 0.80 c}{1 + \frac{(0.80c)(0.80c)}{c^{2}}}

v_{2e} = 0.976 c

You might be interested in
Two point charges, with charge magnitudes q and ????, are placed a distance r apart. In this arrangement, each point charge expe
sammy [17]

Answer:

1)  Q ’= 8 Q ,  2)    q ’= 16 q ,  3)   r ’= ¾ r

Explanation:

For this exercise we will use Coulomb's law

      F = k q Q / r²

It asks us to calculate the change of any of the parameters so that the force is always F

Original values

                q, Q, r

Scenario 1

      q ’= 2q

       r ’= 4r

     F = k q ’Q’ / r’²

we substitute

     F = k 2q Q ’/ (4r)²

     F = k 2q Q '/ 16r²

we substitute the value of F

      k q Q / r² = k q Q '/ 8r²

       Q ’= 8 Q

Scenario 2

       Q ’= Q

       r ’= 4r

we substitute

      F = k q ’Q / 16r²

      k q Q / r² = k q’ Q / 16 r²

      q ’= 16 q

Scenario 3

      q ’= 3/2 q

      Q ’= ⅜ Q

we substitute

        k q Q r² = k (3/2 q) (⅜ Q) / r’²

        r’² = 9/16 r²

        r ’= ¾ r

6 0
3 years ago
3. How does Earth’s rotation affect our view of stars
Elis [28]
Since we ride along with the Earth while it's doing whatever it does,
the Earth's rotation causes our eyes to constantly point in a different
direction.

If we try to keep watching one star, we have to keep changing the
direction of our eyes to keep looking at the same star. 

We can't feel the Earth rotating, so our brains say that the star  ... and
the sun and the moon too ... is actually moving across the sky.
5 0
3 years ago
Read 2 more answers
A charge of 5.0 coulombs moves through a circuit in 0.50 second. What is the current in the circuit
user100 [1]

Answer:

10

Explanation:

i = 5/.5 = 10 Amps.  Hope this helps :)

6 0
3 years ago
Keeping the mass at 1.0 kg and the velocity at 10.0 m/s, record the magnitude of centripetal acceleration for each given radius
Paha777 [63]

Answer:

The centripetal acceleration for the first radius; 2.0 m = 50 m/s²

The centripetal acceleration for the second radius; 4.0 m = 25 m/s²

The centripetal acceleration for the third radius; 6.0 m = 16.67 m/s²

The centripetal acceleration for the fourth radius; 8.0 m = 12.5 m/s²

The centripetal acceleration for the fifth radius; 10.0 m = 10 m/s²

Explanation:

Given;

mass of the object, m = 1 kg

velocity of the object, v = 10 m/s

different values of the radius, 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m

The centripetal acceleration for the first radius; 2.0 m

a_c = \frac{v^2}{r} \\\\a_c_1= \frac{(10)^2}{2} \\\\a_c_1= 50 \ m/s^2

The centripetal acceleration for the second radius; 4.0 m

a_c_2= \frac{(10)^2}{4} \\\\a_c_2= 25 \ m/s^2

The centripetal acceleration for the third radius; 6.0 m

a_c_3= \frac{(10)^2}{6} \\\\a_c_3= 16.67 \ m/s^2

The centripetal acceleration for the fourth radius; 8.0 m

a_c_4= \frac{(10)^2}{8} \\\\a_c_4= 12.5 \ m/s^2

The centripetal acceleration for the fifth radius; 10.0 m

a_c_5= \frac{(10)^2}{10} \\\\a_c_5= 10 \ m/s^2

6 0
3 years ago
As a system expands, it absorbs 52.5 J of energy in the form of heat from the surroundings. The piston is working against a pres
Kaylis [27]

Answer:

Vi = 0.055 m³ = 55 L

Explanation:

From first Law of Thermodynamics, we know that:

ΔQ = ΔU + W

where,

ΔQ = Heat absorbed by the system = 52.5 J

ΔU = Change in Internal Energy = -102.5 J (negative sign shows decrease in internal energy of the system)

W = Work Done in Expansion by the system = ?

Therefore,

52.5 J = - 102.5 J + W

W = 52.5 J + 102.5 J

W = 155 J

Now, the work done in a constant pressure condition is given by:

W = PΔV

W = P(Vf - Vi)

where,

P = Constant Pressure = (0.5 atm)(101325 Pa/1 atm) = 50662.5 Pa

Vf = Final Volume of System = (58 L)(0.001 m³/1 L) = 0.058 m³

Vi = Initial Volume of System = ?

Therefore,

155 J = (50662.5 Pa)(0.058 m³ - Vi)

Vi = 0.058 m³ - 155 J/50662.5 Pa

Vi = 0.058 m³ - 0.003 m³

<u>Vi = 0.055 m³ = 55 L</u>

7 0
3 years ago
Other questions:
  • 2. A/An _______ is composed of two or more types of matter that can be present in varying amounts.
    12·2 answers
  • Point charge A with a charge of +4.00 μC is located at the origin. Point charge B with a charge of +7.00 μC is located on the x
    12·2 answers
  • Th answer is "electric attraction is a force that can act at a distance."
    9·1 answer
  • A ball of mass 24.1 g is attached to a cord of length 0.417 m and rotates in a vertical circle. What is the minimum speed the ba
    7·1 answer
  • What is the largest-aperture Earth-based telescope currently in use at visible wavelengths?
    15·1 answer
  • As a pendulum swings from its highest to its lowest position along an arc, what happens to its kinetic energy and potential ener
    12·1 answer
  • 1.
    14·2 answers
  • Find the recoil velocity of a 65kg ice hockey goalie who catches a 0.15kg hockey puck slapped at him at a velocity of 50m/s. Ass
    5·1 answer
  • The deeper you dive into the ocean and the higher the altitude you gain when climbing a mountain result in what?
    12·1 answer
  • In the diagram below astronauts on different planets are dropping apples.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!