1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
3 years ago
9

How much energy does it take to melt a 16.87 g ice cube? ΔHfus = 6.02 kJ/mol How much energy does it take to melt a 16.87 g ice

cube? = 6.02 kJ/mol 108 kJ 102 kJ 5.64 kJ 936 J none of the above
Physics
1 answer:
Vilka [71]3 years ago
5 0

Answer:

How much energy does it take to melt a 16.87 g ice cube? ΔHfus = 6.02 kJ/mol How much energy does it take to melt a 16.87 g ice cube? = 6.02 kJ/mol

A. 108 kJ

B. 102 kJ

C. 5.64 kJ

D. 936 kJ

E. none of the above

<em>5.64 kJ</em>

Explanation:

The Heat of fusion is the heat energy required to dissolve a given mass of ice at melting point.

<h3>Step by Step Calculation</h3>

The heat energy required to dissolve ice can be calculated using the expression below;

Q = ΔH_{f} x m ...............................................1

where Q is the heat energy required;

           ΔH_{f}  is the heat of fusion for ice;

           m is the mole

All the parameters above are provided in the question except m, so to get m we use the molar mass of water (also for ice) which is 18.01528 g/mol .

<em>This means that 18.01528 g of ice is contained in one mole, therefore the mole for 16.87 g of ice is given as;</em>

m = \frac{16.87g}{18.015g/mol}

m = 0.9364 mole of ices

Now the parameters are complete, we are given;

ΔH_{f}  = 6.02 kJ/mol

m = 0.9364 mol

Q =?

Substituting into equation 1, we have

Q =  6.02 kJ/mol x 0.9364 mol

Q = 5.64 kJ

<em>Therefore, the energy required to melt 16.87 g of ice is 5.64 kJ</em>

You might be interested in
ASAP ASAP ASAP
mylen [45]

The experiments will involve two billiard balls of known masses, m₁ and m₂, and velocities u₁ and u₂. The two are allowed to collide and the velocities of the balls after the collision v₁ and v₂ are recorded.

The momentum before and after the collision is then calculated as follows:

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

<h3>What is the statement of the law of conservation of momentum?</h3>

The law of the conservation of momentum states that the momentum before and after collision in a system of colliding bodies is conserved

The momentum of a body is calculated using the formula below:

Momentum = mass * velocity.

Hence, for the two billiard balls, the momentum before and after the collision is conserved.

Learn more about momentum at: brainly.com/question/1042017

#SPJ1

3 0
1 year ago
The bird that migrates the farthest is the Arctic tern. Each year, the Arctic tern travels
Tanzania [10]

Answer: 131.14km per day

Explanation: since the second half of the terns migration takes 122 days we can assume that the full migration would take 244 days. using this we can divide the total distance by the total amount of days it takes (because speed = distance/time) which is 32,000/244, which would be 131.14

8 0
2 years ago
A tank contains gas at 13.0°C pressurized to 10.0 atm. The temperature of the gas is increased to 95.0°C, and half the gas is re
fomenos

Answer:

The pressure of the remaining gas in the tank is 6.4 atm.

Explanation:

Given that,

Temperature T = 13+273=286 K

Pressure = 10.0 atm

We need to calculate the pressure of the remaining gas

Using equation of ideal gas

PV=nRT

For a gas

P_{1}V_{1}=nRT_{1}

Where, P = pressure

V = volume

T = temperature

Put the value in the equation

10\times V=nR\times286....(I)

When the temperature of the gas is increased

Then,

P_{2}V_{2}=\dfrac{n}{2}RT_{2}....(II)

Divided equation (I) by equation (II)

\dfrac{P_{1}V}{P_{2}V}=\dfrac{nRT_{1}}{\dfrac{n}{2}RT_{2}}

\dfrac{10\times V}{P_{2}V}=\dfrac{nR\times286}{\dfrac{n}{2}R368}

P_{2}=\dfrac{10\times368}{2\times286}

P_{2}= 6.433\ atm

P_{2}=6.4\ atm

Hence, The pressure of the remaining gas in the tank is 6.4 atm.

4 0
2 years ago
* 1a Average speed
ruslelena [56]

Explanation:

\implies   v_{av} =  \dfrac{total \: displacement}{total \: time}

\implies   v_{av} =  \dfrac{100}{10}

\implies   v_{av} =10 \:  {ms}^{ - 1}

4 0
2 years ago
A particle that carries a net charge of -41.8 μc is held in a region of constant, uniform electric field. the electric field vec
miss Akunina [59]
The total work done by the electric field on the charge is given by the scalar product between the electric force acting on the charge and the displacement of the charge:
W=F d cos \theta
where the force is F=qE, d=0.556 and \theta=55.2^{\circ}. Using the value of q and E given by the problem, we find
W=qEdcos\theta = 6.39\cdot10^{-5}J
3 0
3 years ago
Other questions:
  • 9) At a construction site, a small crane is raising two boxes of nails on a plank to the roof. One box has already been opened a
    12·2 answers
  • 1. Line segment AC touches the circle at a single point B. Line segment OB extends through the center of the circle.
    7·1 answer
  • Blaise Pascal duplicated Torricelli's barometer using a red Bordeaux wine of density 965 kg/m3 as the working liquid (see figure
    14·1 answer
  • Your 64-cm-diameter car tire is rotating at 3.5 rev/s when suddenly you press down hard on the accelerator. After traveling 200
    6·1 answer
  • Can someone please help me on this
    5·1 answer
  • True or false Scientific conclusions can and should be based on more than just observable evidence.
    10·1 answer
  • What’s the answer anyone??
    9·2 answers
  • Unpolarized light is incident upon two polarization filters that do not have their transmission axes aligned. If 38 % of the lig
    7·1 answer
  • A car is moving with a constant velocity of 25 m/s. Which of the following is true?
    10·1 answer
  • Find the speed of a satellite in geostationary orbit.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!