Do you need help with all of them
Answer:
B
Explanation:
hair can be a safety hazard
When the incident light is yellow the width of the central band greater. Single-wavelength light sources are known as monochromatic lights, where mono stands for one and chroma for color. Monochromatic lights are defined as visible light that falls inside a specific range of wavelengths. It has a wavelength that falls within a constrained wavelength range.
A laser beam is the ideal illustration of monochromatic light. A monochromatic light beam produced by a single atomic transition with a particular single wavelength is what makes up a laser. A color scheme that consists solely of different shades of one color is referred to as monochromatic.
To learn more about monochromatic, click here.
brainly.com/question/23624834
#SPJ4
Answer:
33,458.71 turns
Explanation:
Given: L = 37 cm = 0.37 m, B= 0.50 T, I = 4.4 A, n= number of turn per meter
μ₀ = Permeability of free space = 4 π × 10 ⁻⁷
Solution:
We have B = μ₀ × n × I
⇒ n = B/ (μ₀ × I)
n = 0.50 T / ( 4 π × 10 ⁻⁷ × 4.4 A)
n = 90,428.94 turn/m
No. of turn through 0.37 m long solenoid = 90,428.94 turn/m × 0.37
= 33,458.71 turns
Answer:
.
Explanation:
When the ball is placed in this pool of water, part of the ball would be beneath the surface of the pool. The volume of the water that this ball displaced is equal to the volume of the ball that is beneath the water surface.
The buoyancy force on this ball would be equal in magnitude to the weight of water that this ball has displaced.
Let
denote the mass of this ball. Let
denote the mass of water that this ball has displaced.
Let
denote the gravitational field strength. The weight of this ball would be
. Likewise, the weight of water displaced would be
.
For this ball to stay afloat, the buoyancy force on this ball should be greater than or equal to the weight of this ball. In other words:
.
At the same time, buoyancy is equal in magnitude the the weight of water displaced. Thus:
.
Therefore:
.
.
In other words, the mass of water that this ball displaced should be greater than or equal to the mass of of the ball. Let
denote the density of water. The volume of water that this ball should displace would be:
.
Given that
while
:
.
In other words, for this ball to stay afloat, at least
of the volume of this ball should be under water. Therefore, the volume of this ball should be at least
.