Answer:
8.1 N/49 N=0.1653 which means 16.53% of the weight of the object on Earth.
Explanation:
On the Moon, where the gravitational constant is 1.62
, the weight of the 5 kg object will be: 
Where the answer is in Newtons (N) since all quantities are given in the SI system.
On Earth, on the other hand, the weight of the object is:

Therefore the object's weight on the Moon compared to that on Earth will be:

That is, 16.53% of the weight the object has on Earth.
The correct answer to the question is : Transverse wave.
EXPLANATION :
Before going to answer this question, first we have to understand the longitudinal and transverse wave.
LONGITUDINAL WAVE : A longitudinal wave is a mechanical wave in which the direction of vibration of particles is parallel to the direction of wave propagation. It moves in the form of compression and rarefaction.
For instance, sound wave.
TRANSVERSE WAVE : A transverse wave is a mechanical wave in which the direction of vibration of particles is perpendicular to the direction of wave propagation. It moves in the form of crests and troughs.
For instance, the wave created in a pond when a stone is dropped into it.
Hence, the correct answer of this question is transverse wave.
Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
Answer:
B. The elastic portion of a straight-line, downward-sloping demand curve corresponds to the segment above the midpoint.
Explanation:
Elasticity measures the sensitivity of one variable to another. Specifically it is a figure that indicates the percentage variation that a variable will experience in response to a variation of another one percent.
The elasticity of demand measures the reaction of demand when one of the factors that affects it varies.
<u>Elasticity - Price of demand.</u>
easure the sensitivity of the quantity demanded to price variations. It indicates the percentage variation that the quantity demanded of a good will experience if its price rises by 1 percent.
<u>
Elastic Demand
</u>
The demand quantity is relatively sensitive to price variations, so the total expenditure on the product decreases when the price rises, the price elasticity takes value greater than -∞ but less than -1
Our solar system consists of the sun and the 9 planets and their moons.
The galaxy is outside our solar system.