Answer:
EF =58
Step-by-step explanation:
from the illustration,
EF =DF - DE
<em>give</em><em>n</em><em> </em><em>that</em><em> </em><em>DF</em><em> </em><em>=</em><em>9</em><em>x</em><em>-</em><em>3</em><em>9</em><em> </em><em>,</em><em> </em><em>DE</em><em> </em><em>=</em><em>4</em><em>7</em><em> </em><em>EF</em><em>=</em><em>3</em><em>x</em><em> </em><em>+</em><em>1</em><em>0</em>
<em>sub</em><em>stitute</em><em> </em><em>them</em><em> </em><em>into</em><em> </em><em>the</em><em> </em><em>formu</em><em>la</em><em>,</em>
<em> </em><em> </em>
<em>3</em><em>x</em><em> </em><em>+</em><em>1</em><em>0</em><em>=</em><em>9</em><em>x</em><em>-</em><em>3</em><em>9</em><em> </em><em>-</em><em> </em><em>4</em><em>7</em>
<em>sol</em><em>ving</em><em> </em><em>for</em><em> </em><em>x</em>
<em>3</em><em>x</em><em> </em><em>+</em><em>1</em><em>0</em><em> </em><em>=</em><em>9</em><em>x</em><em> </em><em>-</em><em>8</em><em>6</em>
<em>grou</em><em>ping</em><em> like</em><em> </em><em>ter</em><em>ms</em>
<em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>9x</em><em> </em><em>=</em><em>-</em><em>8</em><em>6</em><em> </em><em>-</em><em>1</em><em>0</em>
<em>-6x</em><em>=</em><em>-</em><em>9</em><em>6</em>
<em>div</em><em>iding</em><em> </em><em>throu</em><em>gh</em><em> </em><em>by</em><em> </em><em>-</em><em>6</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>but</em><em> </em><em>EF</em><em>=</em><em>3</em><em>x</em><em>+</em><em>1</em><em>0</em>
substitute x=16 into it to get the EF
EF= 3(16)+10
EF=48+10
EF=58
Answer:

Step-by-step explanation:

Answer:
C) Tom did not distribute to both terms in parentheses.
Step-by-step explanation:
Addition within a paranthesis has a distributive property to the multiplier outside the paranthesis. Ignoring this will lead to a wrong value for the operation.