Divide that my the molar mass which is 23 so 1.4087 g
Answer: Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + 2H2O(l)
Explanation:
Since this is a neutralization reaction, the end product would be salt and water. In this equation Calcium will displace hydrogen from the acid because it is more reactive, resulting in the formation of CaSO4 (salt), while the displaced H2 molecule combines with OH molecules to form water.
The equation of the reaction is thus;
Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + H2O(l), in other to balance it, we add ''2'' to the water molecule in the right hand side of the equation.
Balance equation is
Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + 2H2O(l)
One molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
<h3>What is an equation?</h3>
The term chemical equation has to do with the presentation of a chemical reaction on paper in a way that it can be easily understood. It is easy to write an equation to show what is going on in a reaction system.
Now we have the reactions as shown in the question. In this reaction which is the synthesis of ammonia and occurs industrially in the Haber process. The statement that is not true is that; one molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
Learn more about chemical equation:brainly.com/question/28294176
#SPJ1
According to ideal gas equation, we know for 1 mole of gas: PV=RT
where P = pressure, T = temperature, R = gas constant, V= volume
If '1' and '2' indicates initial and final experimental conditions, we have

Given that: V1 = 100.0 kPa, T1 = 100.0 K, V1 = 2.0 m3, T2 = 400 K, P2 = 200.0 kPa
∴ on rearranging above eq., we get V2 =

∴ V2 = 4 m3
Answer:
1,2,3
Explanation:
Heat gain implies that heat is absorbed by the system in order to make the stated phase transition possible.
Before a liquid changes to gas, intermolecular forces in the liquid are broken by energy supplied as heat.
Also, transition from solid to liquid requires energy to break intermolecular bonds.
Finally, sublimation requires input of energy in the form of heat.