<span>The correct answer is( A) blood.
when the buffer solution its PH value changes very little when a small amount
of strong acid or base is added to it, and here the bicarbonate buffering system is used to regular the PH of the blood that keeping the PH at nearly constant value by maintaining the original acidity or basicity of the solution.</span>
Answer:
Half-life = 3 minutes
Explanation:
Using the radioactive decay equation we can solve for reaction constant, k. And by using:
K = ln2 / Half-life
We can find half-life of polonium-218
Radioactive decay:
Ln[A] = -kt + ln [A]₀
Where:
[A] could be taken as mass of polonium after t time: 1.0mg
k is Reaction constant, our incognite
t are 12 min
[A]₀ initial amount of polonium-218: 16mg
Ln[A] = -kt + ln [A]₀
Ln[1.0mg] = -k*12min + ln [16mg]
-2.7726 = - k*12min
k = 0.231min⁻¹
Half-life = ln 2 / 0.231min⁻¹
<h3>Half-life = 3 minutes</h3>
0.447 is the mole fraction of Nitrogen in this mixture.
mole fraction of nitrogen= moles of nitrogen/total moles
mole fraction of nitrogen=0.85/1.90
mole fraction of nitrogen=0.447
The product of the moles of a component and the total moles of the solution yields a mole fraction, which is a unit of concentration measurement. Because it is a ratio, mole fraction is a unitless statement. The sum of the components of the mole fraction of a solution is one. In a mixture of 1 mol benzene, 2 mol carbon tetrachloride, and 7 mol acetone, the mole fraction of the acetone is 0.7. This is computed by dividing the sum of the moles of acetone in the solution by the total number of moles of the solution's constituents:
To know more about mole fraction visit : brainly.com/question/8076655
#SPJ4