The answer & explanation for this question is given in the attachment below.
First find the mass of <span>solute:
Molar mass KNO</span>₃ = <span>101.1032 g/mol
mass = Molarity * molar mass * volume
mass = 0.800 * 101.1032 * 2.5
mass = 202.2064 g of KNO</span>₃
<span>To prepare 2.5 L (0800 M) of KNO3 solution, must weigh 202.2064 g of salt, dissolve in a Beker, transfer with the help of a funnel of transfer to a volumetric flask, complete with water up to the mark, capping the balloon and finally shake the solution to mix.</span>
hope this helps!
The correct answer is Applied Biochemistry.
In applied biochemistry the knowledge and methods of biochemistry is applied to solve real world problems like to discover effective medicine in the treatment of life threatening diseases such as cancer, to improve productivity in agriculture, to treat diseases caused by the mutation in the metabolic pathway and more.
The complete statement will be "Support gases system are subject to the same hazards as, present in any piped medical gas system with the additional hazard of higher pressure"
<h3>What are gas systems?</h3>
Generally, A gas system is simply defined as an assemblage of tubes, used for gas reticulation and circulation.
In conclusion, a higher pressure will be experienced as an additional hazard to the medical gas system.
Read more about Pressure
brainly.com/question/25688500
Answer:
It is at the greater angle (higher solar elevation) that the surface area receives the most energy because the rays are spread out less. ... The smaller the elevation angle (30°, 20°, 10°) the less energy received per square centimeter, because the rays spread out over a greater area.
Explanation:
correct me if I'm wrong