The pH of the weak acid is 6.93.
Given,
K= 1.15 *
c=0.102
[H]= K*c= 1.15 *
* 0.102= 0.1173 *
p[H]= -log[H]= 6.93
<h3>Weak acid</h3>
A weak acid is one that partially separates into its ions in water or an aqueous solution. A strong acid, on the other hand, completely splits into its ions in water. The conjugate base of a weak acid is also a weak base, and vice versa for the conjugate acid of a weak base. Weak acids have a higher pH than strong acids at the same concentration. Simple arrows pointing left to right are used to represent the reaction of a strong acid ionising in water. On the other hand, a weak acid ionising in water has a double arrow reaction arrow, indicating that both the forward and reverse reactions take place at equilibrium.
Learn more about Weak acid here:
brainly.com/question/22104949
#SPJ4
Explanation:
It is known that relation between
,
, and pH is as follows.
![E_{cell} = E^{o}_{cell} - (\frac{0.0591}{n}) \times log[H^{+}] ](https://tex.z-dn.net/?f=E_%7Bcell%7D%20%3D%20E%5E%7Bo%7D_%7Bcell%7D%20-%20%28%5Cfrac%7B0.0591%7D%7Bn%7D%29%20%5Ctimes%20log%5BH%5E%7B%2B%7D%5D%0A)
Also, it is known that
for hydrogen is equal to zero.
Hence, substituting the given values into the above equation as follows.
![E_{cell} = E^{o}_{cell} - (\frac{0.0591}{n}) \times log[H^{+}] ](https://tex.z-dn.net/?f=E_%7Bcell%7D%20%3D%20E%5E%7Bo%7D_%7Bcell%7D%20-%20%28%5Cfrac%7B0.0591%7D%7Bn%7D%29%20%5Ctimes%20log%5BH%5E%7B%2B%7D%5D%0A)
0.238 V = 0 - (\frac{0.0591}{1}) \times log[H^{+}]
[/tex]
= 4.03
= antilog 4.03
= 3.5
As, pH =
.
Thus, we can conclude that pH of the given unknown solution at 298 K is 3.5.
1 mole of any substance has Avagadro number of molecules and it's weight is equal to its molecular weight.
.......................................................................................................................
Answer 1:
Molecular weight of HNO3 = 63.01 g/mol
Therefore, 1mole of HNO3 = 63.03 g
Hence, 15.7 mole of HNO3 = 63.03 X 15.7
= 989.57 g
Thus, mass of 15.7 mole of HNO3 = 989.57 g
..........................................................................................................................
Answer 2:
Molecular weight of H2O2 = 34.01 g/mol
Therefore, 1mole of H2O2 = 34.01g
Hence, 0.00104 mole of H2O2 = 34.01 X 0.00104
= 0.03537 g
Thus, mass of 0.00104 mole of H2O2 is 0.03537 g
.........................................................................................................................
Answer 3:
Molecular weight of SO2 = 64.07 g/mol
Therefore, 1mole of SO2 = 64.07 g
Hence, 72.1 mmole of SO2 = 64.07 X 0.0721
= 4.619 g
Thus, mass of 72.1 mm of SO2 is 4.619 g
.........................................................................................................................
Answer 4:
Molecular weight of XeF2 = 169.29 g/mol
Therefore, 1mole of XeF2 = 169.29 g
Hence, 1.23 mole of XeF2 = 169.29 X 1.23
= 208.23 g
Thus, mass of 1.23 mole of XeF2 is 208.23 g
Answer:
CaCO3 + 2 HCl => CaCl2 + CO2 + H2O
Explanation:
CO2 will burst out when the reaction occurs in water, and the ions will be dissociated: Ca(2+) + 2 Cl (-)