Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Answer:
Ee your house 6r2f5r56rrrr6gjyf
Explanation:
The statement that identifies an oxidation-reduction reaction is a reaction in which oxidation numbers change (option C).
<h3>What is a redox reaction?</h3>
A redox or oxidation-reduction reaction is a chemical reaction in which some of the atoms have their oxidation number changed.
In a chemical reaction that involves oxidation and reduction, the oxidation number of the involved ions either decreases or increases.
Therefore, the statement that identifies an oxidation-reduction reaction is a reaction in which oxidation numbers change.
Learn more about redox reaction at: brainly.com/question/13293425
#SPJ1
Answer:
Answer the last one Nuclear decay rates vary, but chemical reaction rates are constant
Explanation:
Correct me if im wrong
The water cycle ...........