Gdnndjfndmnxndndndjdjdjxncncncnnc
Answer:
V₂ = 15.3
Explanation:
Given data:
Initial volume = 12.0 L
Initial temperature = 20°C
Final temperature =100°C
Final volume = ?
Solution:
First of all we will convert the temperature into kelvin.
20°C + 273 = 293 K
100°C + 273 = 373 K
Formula:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 12.0 L × 373 K / 293 k
V₂ = 4476 L.K /293 k
V₂ = 15.3
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Answer:
The correct answer is option c.
Explanation:
Alkanes with higher molecular mass has higher boiling point.
Thisis because when the molar mass of the alkanes increases the the surface area increases with which van der Waals forces between the molecules of alkane also increase which increases the association of the molecules of with each other which results in increase in boiling point is observed.
The increasing order of the molar mass of the given alkanes;

So out of ethane, pentane and heptane . Heptane has highest molecular mass with higher boiling point value. Where as ethane have the lowest value of boiling point.
Answer:
During the process of reaching thermal equilibrium heat is transferred between the object. heat is always transferred from the object at the higher temperature to the object with lower temperature. For a gas, the heat transfer is related to a change in temperature.