My answer:
13 group of the periodic table represented by boron, aluminum and gallium subgroup. It includes gallium, indium, thallium. Typical steper oxidation in the subset gallium 3 is explained by the presence of (n-1)d^10 E-configuration.
Aluminium oxidation degree has +3 an electronic configuration of noble gases S^2P^6
Hope this helps yah!!!
I believe it becomes less dense, bc when you heat something it’s molecules spread further apart.
Reactivity trends of halogen:
1) Melting point and boiling points increased down the
group
2) Colour becomes darker.
E.g. Fluorine (pale yellow)
Chlorine (yellowish-green)
Bromine (reddish-brown)
Iodine (purplish-black)
Astatine (black)
3) The reactivity decreases down the group.
Reactivity:
F > Cl > Br > I > At
There are chief differences between organic and inorganic compounds. ... The main difference is in the presence of a carbon atom; organic compounds will contain a carbon atom (and often a hydrogen atom, to form hydrocarbons), while almost all inorganic compounds do not contain either of those two atoms.
Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ