Answer:

Explanation:
Hello!
In this case, since 12.75 g of calcium iodide has the following number of moles (molar mass = 293.89 g/mol):

In such a way, since 1 mole of calcium iodide contains 2 moles of atoms of iodine, and one mole of atoms of iodine contains 6.022x10²³ atoms (Avogadro's number), we compute the resulting atoms as shown below:

Best regards!
Benefits; helps our red blood cells transport oxygen all around our body
Answer:C. The value of n for H+(H2O)n can be calculated for almost all solutions.
Explanation:
An hydrate can be described as a substance that contains water or with an hydrogen bonded water molecule group.
The hydrate group doesn't necessarily have a fixed formula.
<h3>
Answer: b) 0.250 mol</h3>
============================================
Work Shown:
Using the periodic table, we see that
- 1 mole of carbon = 12 grams
- 1 mole of oxygen = 16 grams
These are approximations and these values are often found underneath the atomic symbol. For example, the atomic weight listed under carbon is roughly 12.011 grams. I'm rounding to 2 sig figs in those numbers listed above.
So 1 mole of CO2 is approximately 12+2*16 = 44 grams. The 2 is there since we have 2 oxygens attached to the carbon atom.
-------------------
Since 1 mole of CO2 is 44 grams, we can use that to convert from grams to moles.
11.0 grams of CO2 = (11.0 grams)*(1 mol/44 g) = (11.0/44) mol = 0.250 mol of CO2
In short,
11.0 grams of CO2 = 0.250 mol of CO2
This is approximate.
We don't need to use any of the information in the table.
500 mg in g :
1 g ----------- 1000 mg
? -------------- 500 mg
500 x 1 / 1000 => 0.5 g
total mass:
50 g + 0.5 g + 0.1 g => 50.6 g
hope this helps!