*Given
Money of Phoebe - 3 times as much as Andy
Money of Andy - 2 times as much as Polly
Total money of Phoebe, - <span>£270
</span> Andy and Polly
*Solution
Let
B - Phoebe's money
A - Andy's money
L - Polly's money
1. The money of the Phoebe, Andy, and Polly, when added together would total <span>£270. Thus,
</span>
B + A + L = <span>£270 (EQUATION 1)
2. Phoebe has three times as much money as Andy and this is expressed as
B = 3A
3. Andy has twice as much money as Polly and this is expressed as
A = 2L</span> (EQUATION 2)
<span>
4. This means that Phoebe has ____ as much money as Polly,
B = 3A
B = 3 x (2L)
B = 6L </span>(EQUATION 3)<span>
This step allows us to eliminate the variables B and A in EQUATION 1 by expressing the equation in terms of Polly's money only.
5. Substituting B with 6L, and A with 2L, EQUATION 1 becomes,
6L + 2L + L = </span><span>£270
</span> 9L = <span>£270
</span> L = <span>£30
So, Polly has </span><span>£30.
6. Substituting L into EQUATIONS 2 and 3 would give us the values for Andy's money and Phoebe's money, respectively.
</span>
A = 2L
A = 2(£30)
A = £60
Andy has £60
B = 6L
B = 6(£30)
B = £180
Phoebe has £180
Therefore, Polly's money is £30, Andy's is £60, and Phoebe's is £180.
Answer:
D is the answer
Step-by-step explanation:
Answer: is where that one dot is at home n the y-axis
Step-by-step explanation:
Answer:
31.4 inches
Step-by-step explanation:
If a circle is inscribed in a square then diameter of circle inscribed is same as side as of square.
In the given problem it is given that side of square is 10 inches.
So diameter of circle inscribed is 10 inches
we know radius of circle is half of diameter of circle
Thus, radius of circle inscribed = diameter of circle/2 = 10/2 = 5inches.
Expression to calculate circumference of circle is given by 
where r is the radius of circle.
Thus circumference of circle inscribed is

Thus, circumference of circle inscribed is 31.4 inches
Given:
The system of inequalities:


To find:
Whether the points (–3,–2) and (3,2) are in the solution set of the given system of inequalities.
Solution:
A point is in the solution set of the given system of inequalities if it satisfies both inequalities.
Check for the point (-3,-2).



This statement is true.



This statement is also true.
Since the point (-3,-2) satisfies both inequalities, therefore (-3,-2) is in the solution set of the given system of inequalities.
Now, check for the point (3,2).



This statement is false because
.
Since the point (3,2) does not satisfy the second inequality, therefore (3,2) is not in the solution set of the given system of inequalities.