Answer:
becauz the cos .1sj sin A the thing cos
Answer:
Use the normal distribution if the population standard deviation is known.
Use the student's t distribution when the population standard deviation is unknown.
Explanation:
A mound-shaped distribution refers to the normal distribution.
A good sample size for testing against the normal distribution should be
n >= 30.
The condition for the sample size is satisfied.
However, we are not given the population standard deviation, therefore it is assumed to be unknown.
Therefore the student's t distribution should be used.
Procedure:
1) Integrate the function, from t =0 to t = 60 minutues to obtain the number of liters pumped out in the entire interval, and
2) Substract the result from the initial content of the tank (1000 liters).
Hands on:
Integral of (6 - 6e^-0.13t) dt ]from t =0 to t = 60 min =
= 6t + 6 e^-0.13t / 0.13 = 6t + 46.1538 e^-0.13t ] from t =0 to t = 60 min =
6*60 + 46.1538 e^(-0.13*60) - 0 - 46.1538 = 360 + 0.01891 - 46.1538 = 313.865 liters
2) 1000 liters - 313.865 liters = 613.135 liters
Answer: 613.135 liters
12, 4
take the first number together than the last ones and just find the difference
The interval of the convergence is x < -3 or x > 3 if the series n 3^n/x^n goes infinitely.
<h3>What is convergent of a series?</h3>
A series is convergent if the series of its partial sums approaches a limit; that really is, when the values are added one after the other in the order defined by the numbers, the partial sums getting closer and closer to a certain number.
We can find the interval for the convergent by root test.
Like the Ratio Test, the root Test is used to determine absolute convergence (or not) with factorials, the ratio test is useful.
For the given series:

As the series goes infinitely, we can use root test.
By the root test, the convergence interval will be;
The interval of convergence is:
x < -3 or x > 3 we can write this as:
|x| < 3
Thus, the interval of the convergence is x < -3 or x > 3 if the series n 3^n/x^n goes infinitely.
Learn more about the convergent of a series here:
brainly.com/question/15415793
#SPJ4