U must burn it
or
Make it under go chemical treatment
Considering the definition of molarity, the molar concentration is 0.294
.
Molarity reflects the concentration of a solution indicating the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units
.
In this case, you know:
- amount of moles of solute= 0.250 moles
- volume= 0.850 L
Replacing in the definition of molarity:

Solving:
molarity= 0.294 
Finally, the molar concentration is 0.294
.
Learn more about molarity with this example: brainly.com/question/15406534?referrer=searchResults
Answer:
The atomic mass of element is 65.5 amu.
Explanation:
Given data:
Abundance of X-63 = 50.000%
Atomic mass of X-63 = 63.00 amu
Atomic mass of X-68 = 68.00 amu
Atomic mass of element = ?
Solution:
Abundance of X-68 = 100-50 = 50%
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (50×63)+(50×68) /100
Average atomic mass = 3150 + 3400 / 100
Average atomic mass = 6550 / 100
Average atomic mass = 65.5 amu.
The atomic mass of element is 65.5 amu.
Answer:
Polar
Step-by-step explanation:
Electronegativity increases from <em>left to right</em> in the Periodic Table.
Cl is further right than C (both tinted pink) in the portion of the Periodic Table below.
Cl is <em>more electronegative</em> than C, so the Cl has a partial negative charge and the C has a partial positive charge.
The C-Cl bond is polar.
Answer:
7 to 1
Explanation:
As you move from row ----- to row ------ in the periodic table, the atomic radius of the elements DECREASES.?
And we have 7 rows in a periodic table, so the answer has to either 1 to 7 or 7 to 1
Theoretically,
Atomic size increase as we move from top to bottom as an extra shell gets added up with every period.
SO, the answer is, 7 to 1