<h2>
Option B is the correct answer.</h2>
Explanation:
We need to find number of protons, electrons and neutrons in ⁶²Ni
Mass number is 62.
That is
Number of proton + Number of neutron = 62
We know that number of proton = 28 for nickel
So
28 + Number of neutron = 62
Number of neutron = 62 - 28 = 34
We also know
Number of protons = Number of electrons
Number of electrons = 28
Option B is the correct answer.
Answer:
When Pu-239 releases an alpha particle, it loses 2 protons and 2 neutrons so it becomes U-235.
when the two waves interfere with eachother to make a dark spot the periodic difference of the two waves is π . the wave length for 2π is 600nm
. ie. for π difference it is 300nm
Answer:
a) wavelength = 656.3 nm
b) the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Explanation:
Given that;
angle of diffraction Θₓ = 22.78°
incident angle Θ₁ = 0
slit separation d = 5900 lines per cm = 1/5900 cm = 10⁻²/5900 m = 0.01/5900 m
order of diffraction n = 1
wavelength λ = ?
to find the wavelength, we use the expression
λ = d (sinΘ₁ + sinΘₓ) / n
To find the wavelength λ;
λ = 0.01/5900 × (sin0 + sin22.78° )
λ = 6.5626 × 10⁻⁷ m
λ = 656.3 x 10⁻⁹ m
∴ λ = 656.3 nm
b)
According Balnur's series spectral lines; n₁ = 3, n₂ = 2 and
λ = R [ 1/n₂² - 1/n₁²]
where R is Rydberg's constant
from λ = R [ 1/n₂² - 1/n₁²]
R = 1/λ [n₂²n₁² / n₁² - n₂²]
R = 10⁹/ 656.3 [ 9 × 4 / 9 - 4 ]
R = 1.097 × 10⁷ m⁻¹
Therefore the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
<u>Answer:</u>
The force F applied to the handle = 330.03 N
<u>Explanation:</u>
The force can be resolved in to two, horizontal component and vertical component. If θ is the angle between horizontal and applied force we have
Horizontal component of force = F cos θ
Vertical component of force = F sin θ
In this problem normal force exerted on the suitcase is 160 N, that is vertical component of force = 160 N and angle θ = 29⁰.
So, F sin 29 = 160
F = 330.03 N
The force F applied to the handle = 330.03 N