Answer:
Explanation:
Using the below formula
Speed of sound = ( distance between observers) *2/(total time taken)
Now putt the given values ,
time taken = 0.80 sec
distance = 256 m
hence
V of sound= 256*2/0.80
V of sound = 640 m/sec
Molecular Geometry is the three-dimensional structure or arrangement of atoms in a molecule.
Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹
First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna: