A recursive sequence is a sequence of numbers whose values are determined by the numbers that come before them in the sequence.
We’re given a sequence whose (n + 1)-th term f(n + 1) depends on the value of the n-th term f(n), specified by the recursive rule
f(n + 1) = -4 f(n) + 3
We’re also given the 1st term in the sequence, f(1) = 1. Using this value and the recursive rule, we can find the next term f(2). (Just replace n with 1.)
f(1 + 1) = -4 f(1) + 3
f(2) = -4 • 1 + 3
f(2) = -1
We do the same thing to find the next term f(3) :
f(2 + 1) = -4 f(2) + 3
f(3) = -4 • (-1) + 3
f(3) = 7
One more time to find the next term f(4) :
f(3 + 1) = -4 f(3) + 3
f(4) = -4 • 7 + 3
f(4) = -25
Answer:
the second one
Step-by-step explanation:
<span>-Calculations may lead to long decimals, but money is in dollars and cents.
-Looks neater</span>
Consider this option:
1. formula of perimeter is: P=2(a+b), where a & b - the sides of rectangle.
2. according to the condition 2(x+(x+4))<120; ⇒ x<28
answer: D. x<28