Answer:
C. The lower legs are levers, and the knees are fulcrums. The ankles hold the loads.
Explanation:
We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
Answer:
the correct answer is see.
Explanation:
it is wat it isssssssssss
<span>The correct answer is: Mechanical Energy
Explanation:
As the guitar strings are plunked, the potential energy stored in the strings has an ability to make them vibrate. When the strings are vibrating, that potential energy is actually converted to the kinetic energy. Hence, the whole phenomena contains both the kinetic energy and the potential energy. The sum of kinetic energy and the potential energy is called Mechanical energy. Therefore, the correct answer is Mechanical Energy.</span>
Answer:
(a)
M = 1.898 x 10^27 kg
(b)
v = 13.74 km/s
(c) E = 0.28 N/kg
Explanation:
Time period, T = 3.55 days = 3.55 x 24 x 3600 second = 306720 s
Radius, r = 6.71 x 10^8 m
G = 6.67 x 10^-11 Nm^2/kg^2
(a) 


M = 1.898 x 10^27 kg
(b) Let v be the orbital velocity


v = 13739.5 m/s
v = 13.74 km/s
(b) The gravitational field E is given by


E = 0.28 N/kg