Answer:
Explanation:
We shall apply here Doppler's effect in optics . The formula is as follows

Δλ is change in wavelength , λ is original wavelength , v is velocity and c is velocity of light
Δλ = 685 - 590 = 95 nm
λ = 685
95 / 685 = v / 3 x 10⁸
v = .416 x 10⁸ m / s
= 4.16 x 10⁷ m /s
The answers is 30 miles per hour, the driver is speeding the car up, section-H, 12 minutes, section-D, and 65 miles per hour.
Answer:
I'll write it below
Explanation:
1) understand the parts.
2)read the scales
3)check the scale of your smallest divisions
4)clean the object you are measuring
5)If you have, unlock the screw
6)close the jaws
I hope this satisfies you sir.
If you have any questions related to this please feel free to ask me. I hope u will follow me and make this the brainliest answer.
Answer:
In a circuit ,<u> VOLTAGE </u>can be said to be the "source" or the "push of electrons". This push then creates what is known as a <u> CURRENT , </u>which is the flow of electric charge through the circuit. This flow can the slowed down or restricted by <u>RESISTOR </u>, and this is also what can be harnessed in order to use electric <u>ENERGY </u>.
Explanation:
Voltage:
It is the 'push' that causes charges to move in a wire or other electrical conductor, also it is a Source input to the electric circuit.
Measured in Volts.
Current:
An electric current is the rate of flow of electric charge from a point or through a region.
Measured in Ampere.
Resistor:
Resistor is used to resist the flow of charge or to resist the current called as Resistance.
Measured in Ohms.
Electric Energy:
Electrical energy is a form of energy resulting from the flow of electric charge.
Measured in Joules.
In a circuit , voltage can be said to be the "source" or the "push of electrons". This push then creates what is known as a current, which is the flow of electric charge through the circuit. This flow can the slowed down or restricted by resistor, and this is also what can be harnessed in order to use electric energy.
Answer:
41°
Explanation:
Kinetic energy at bottom = potential energy at top
½ mv² = mgh
½ v² = gh
h = v²/(2g)
h = (2.4 m/s)² / (2 × 9.8 m/s²)
h = 0.294 m
The pendulum rises to a height of above the bottom. To determine the angle, we need to use trigonometry (see attached diagram).
L − h = L cos θ
cos θ = (L − h) / L
cos θ = (1.2 − 0.294) / 1.2
θ = 41.0°
Rounded to two significant figures, the pendulum makes a maximum angle of 41° with the vertical.