Velocidad angular = (angulo total) / (tiempo total)
Velocidad angular = (1080 grados) / (20 segundos)
Velocidad angular = (1080/20) g/s
Velocidad angular = 54 g/s
Pero 180 grados = π radianes
V.A. = (54 g/s) x (π rad / 180 g)
V.A. = (54π gr-rad / 180 seg-gr)
<em>V.A. = 0.3π rad/seg</em>
V.A. = aproximadamente 0.942 rad/seg
Answer:
The answer is below
Explanation:
The question is not complete since the liquid density is not given.
Archimedes principle states that a body at rest in a fluid is acted upon by an upward force known as the buoyant force. The buoyant force is equal to the weight of the fluid displaced.
An object floats when it is placed in a liquid only if the density of the object is less than the density of the liquid. Therefore those metals with density less than that of mercury would float while those with density greater than mercury would sink.
Answer:
The law of conservation of matter says that in chemical reactions, the total mass of the products must equal the total mass of the reactants.
Answer:
determine his body composition
Explanation:
The mass of the quarterback is 61.2 kg.
Explanation:
mass of the football player = m1 = 102 kg
mass of the quarterback = m2 = ?
velocity of the football player = v1 = 8 m/s
According to the law of conservation of momentum:
The total momentum of a system before and after the collision remains constant. Assuming the situation as an isolated system which is not affected by any external factors, we have:
m₁v₁ + m₂v₂ = (m₁+m₂)V
Here, we need to find m₂.
We assume that the quarterback is standing still when he is attacked by the football player so v₂ = 0 m/s
After the collision both of them fall to the ground with a velocity of 5 m/s so V = 5 m/s

Keywords: momentum, velocity, law of conservation of momentum
Learn more about Law of Conservation of Momentum from brainly.com/question/7538238
#learnwithBrainly