A function

is periodic if there is some constant

such that

for all

in the domain of

. Then

is the "period" of

.
Example:
If

, then we have

, and so

is periodic with period

.
It gets a bit more complicated for a function like yours. We're looking for

such that

Expanding on the left, you have

and

It follows that the following must be satisfied:

The first two equations are satisfied whenever

, or more generally, when

and

(i.e. any multiple of 4).
The second two are satisfied whenever

, and more generally when

with

(any multiple of 10/7).
It then follows that all four equations will be satisfied whenever the two sets above intersect. This happens when

is any common multiple of 4 and 10/7. The least positive one would be 20, which means the period for your function is 20.
Let's verify:


More generally, it can be shown that

is periodic with period

.
<h3>Three t-shirts can be represented as "X" and 3 will be represented as the number of t-shirts Fred bought.</h3><h3 /><h2>3x = 50</h2><h3>÷3 ÷3 ← divide both sides by 3</h3><h3 /><h3>X = $16.66 maximum cost.</h3>
Answer:
89.1° or -1.4°
Step-by-step explanation:
1. Location:
You are on the Mont-Saint-Jean escarpment, near the Belgian town of Waterloo.
The French troops are about 50 m below you and 1.2 km distant.
2. Finding the firing angle
Data:
R = 1200 m
u = 600 m/s
h = -50 m (the height of the target)
a = 9.8 m/s²
We have two conditions.
Horizontal distance
(1) 1200 = 600t cosθ
Vertical distance
(2) -50 = 600t sinθ - 4.9t²
Divide each side of (1) by 600cosθ.

Substitute (3) into (2)

Recall that
(5) sec²θ = 1/cos²θ = tan²θ + 1
Substitute (5) into (4)

Set up a quadratic equation

Solve for θ
Use the quadratic formula.
tanθ = 61.249 or -0.025
θ = arctan(61.249) = 89.1° or
θ = arctan(-0.025) = -1.4°