Answer:

Explanation:
is the angle between the velocity and the magnetic field. So, the magnetic force on the proton is:

A charged particle describes a semicircle in a uniform magnetic field. Therefore, applying Newton's second law to uniform circular motion:

is the centripetal force and is defined as:

Here
is the proton's speed and
is the radius of the circular motion. Replacing this in (1) and solving for r:

Recall that 1 J is equal to
, so:

We can calculate
from the kinetic energy of the proton:

Finally, we calculate the radius of the proton path:

a) 1.57 m/s
The sock spins once every 2.0 seconds, so its period is
T = 2.0 s
Therefore, the angular velocity of the sock is

The linear speed of the sock is given by

where
is the angular velocity
r = 0.50 m is the radius of the circular path of the sock
Substituting, we find:

B) Faster
In this case, the drum is twice as wide, so the new radius of the circular path of the sock is twice the previous one:

At the same time, the drum spins at the same frequency as before, therefore the angular frequency as not changed:

Therefore, the new linear speed would be:

And substituting,

So, we see that the linear speed has doubled.
Answer:
1800J
Explanation:
Given parameters:
Weight of the book = 20N
Total distance covered = 45m + 15m + 30m = 90m
Unknown:
Total work performed on the books = ?
Solution:
To solve this problem we must understand that work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Work done = 20 x 90 = 1800J
Answer:
The time required by the Athlete to work off 1.00 lb of body fat = 0.296 minute
Explanation:
1 lb of body fat = 4.1 k cal
1 k cal = 4.184 Kilo joule
1 lb of body fat = 4.1 × 4.184 = 17.1544 Kilo joule
Athlete expends 3480 Kilo joule in one hour
⇒ Time required to expand 3480 Kilo joule = 60 minute
⇒ Time required to expand 1 Kilo joule =

⇒ Time required to expand 17.1544 Kilo joule =
× 17.1544 = 0.296 min
Therefore the time required by the Athlete to work off 1.00 lb of body fat = 0.296 minute
The chromosphere is the middle layer