Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m
Answer:

Explanation:
The root mean square velocity of the gas at an equilibrium temperature is given by the following formula:

where,
v = root mean square velocity of molecules:
R = Universal Gas Constant
T = Equilibrium Temperature
M = Molecular Mass of the Gas
Therefore,
For T = T₁ :

For T = T₂ :

Since both speeds are given to be equal. Therefore, comparing both equations, we get:

Answer:
First of all, “moist air” is air with a high water vapor content. Water vapor, the invisible, gaseous form of water, occurs in highly variable amounts in the atmosphere. Water is composed of a hydrogen atom and two oxygen atoms (H2O) and has a molecular weight of 18 grams per mole.
Answer:
Explanation:
A chemical change.
Usually those are irreversible. Or they may be reversible, but the form they take may leave your object not the same as they started out.
A physical change might be just as deadly. If the object melted like a chocolate Easter Bunny then the object would be irreversible as well. Take a better example.
Suppose you are talking about a Gold Coin. If you heated it so it melted, the gold would retain its value, but the fact that it is a coin and valuable as such, means that it has lost that part of its value.
I really don't know. My instincts tell me that the chemical change is more dangerous, but I can't rule out the other choice..
5g/cm³
it is not iron.
Explanation:
Given parameters:
Density of iron = 7.874g/cm³
Mass of metal = 2000g
Volume of metal = 400cm³
Unknown:
Density of bar = ?
Is it iron = ?
Solution:
The density of a substance is its mass per unit area. Every substance have an intensive density value that typifies them all.
The density of water and other substances are the same if they maintain their level of pureness.
Density = 
Density of metal bar =
= 5g/cm³
Since this value is not the same as the given density of iron, it is not iron.
learn more:
Density brainly.com/question/5055270
learnwithBrainly