24-15=9 m/s slower in 12 seconds. So 9/12 m/s² slower. Therefore the acceleration is -0,75 m/s²
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:
Explanation:
E₀ = 229.1 V/m
E = E₀ / √2 = 229.1 / 1.414 = 162 V/m
B = E / c ( c is velocity of em waves )
= 162 / (3 x 10⁸) = 54 x 10⁻⁸ T
rate of energy flow = ( E x B ) / μ₀
= 162 x 54 x 10⁻⁸ / 4π x 10⁻⁷
= 69.65 W per m².
Answer:
D. Upward force on the shuttle
Explanation:
The hot gas from space shuttles released downward causes an upward force on the shuttle and propels it up the more.
- This hot gas is produced from super cooled oxygen and hydrogen tanks within the shuttle.
- The upward force on the shuttle allows the craft to escape the gravitational pull of the earth on the shuttle
- Special level of rapid acceleration must be attained for the shuttle to escape the earth pull.