Kepler's second law of planetary motion<span> describes the speed of a </span>planet<span> traveling in an elliptical orbit around the sun. It states that a line between the sun and the </span>planetsweeps equal areas in equal times. Thus, the speed of theplanet<span> increases as it nears the sun and decreases as it recedes from the sun.</span>
Answer:
no.
Explanation:
because the mass of an object never changes.
Answer:
She does a work of 689.44 J in the snow.
Explanation:
A force is said to do work when it alters the state of motion of a body. The work of the force on that body will be equivalent to the energy needed to move it.
In other words, Work is a form of energy transmission between bodies. In order to carry out work, a force must be exerted on a body and it must move.
The work is equal to the product of the force times the distance and the cosine of the angle that exists between the direction of the force and the direction that the moving point or object travels:
W= F*d* cos Ф
Work W is measured in joules (J), force is measured in newtons (N), and displacement in meters (m).
In this case:
- F= 180 N
- d=5 m
- Ф= 40 degrees
Replacing:
W= 180 N*5 m* cos 40
Solving:
W= 689.44 J
<u><em>She does a work of 689.44 J in the snow.</em></u>
Answer:
the velocity of the kid is 5.6 m/s
Explanation:
r is the radius and w is the frequency.
so we should know that the diameter is 18m and the diameter is equal to two times the radius, so r = 18m/2 = 9m
we should also know that the circumference of a circle is equal to c = 2pi*r, so each revolution has this length. if the kid does 5.9 revolutions in one minute then the kid spins at v = 5.9*2pi*9m/min
so we want to write this in meters per second and this means that we need to divide it by 60!
v = (5.9*2pi*9/60)m/s = 5.56 m/s
so your answer will be 5.6 m/s glad i could help!
<span>about $137.00 (plug n play) http://store.racer-union.com try this web site they are the cheapest by about 100 dollars.</span>