Answer:
mass = 4kg
Explanation:
Kinetic Energy = 1/2 x m x v²
where m = mass and v = velocity
So,
KE = 50
1/2 × m × 5² = 50
1/2 × m × 25 = 50
m = (50 x 2)/25
m = 100/25
m = 4 kg
Answer:
All of the above
Explanation:
The correct answer is option E (All of the above)
All the options are alternative source of energy.
The option given are not the traditional way (energy production from coal) of extracting energy as the loss of natural resources does not take place in these source of energy.
energy extracted from wind, solar light , hydrogen ,etc are the source of energy the alternative source of production of energy because do not exploit the natural resources, reduce the carbon emission and energy produced by them is clean energy.
Answer:
area = 5733.33 cm²
length = 5.47 ×
cm
Explanation:
Given data
density = 19.32 g/cm³
mass = 33.16 g
thickness = 3.000 µm = 3 ×
cm
radius r = 1.000 µm = 1 ×
cm
to find out
area of the leaf and length of the fiber
solution
we know volume formula that is
volume = mass / density
volume = 33.16 / 19.32
volume = 1.72 cm³
we know that volume = thickness × area
so area
area = volume / thickness
area = 1.72 / 3 ×
area = 5733.33 cm²
and
we know volume = πr²L
so L = volume / πr²
length = 1.72 / π(1×
)²
length = 5.47 ×
cm
Frequency = speed / wavelength
(6 m/s) / (12 m) = 0.5 Hz.
That's not infrared light.
Infrared light waves move about 50 million times faster than that, and they're only about 0.00000007 as long as that.
Answer:
Explanation:
Given
Initial speed 
distance traveled before coming to rest 
using equation of motion

where v=final velocity
u=initial velocity
a=acceleration
s=displacement

for 
using same relation we get

divide 1 and 2 we get


So a distance if 213.32 ft is required to stop the vehicle with 80 mph speed