Answer:
Relativistic velocity is of the order of 1/10th of the velocity of light
Explanation:
We define relativistic speed (or velocity) as a speed that is a significant fraction of the speed of light: c = 3*10^8 m/s
Such that for these speeds, the special relativity theory starts to apply (the relativity effects starts to apply).
Usually, we define relativistic speeds as those that are of the order (or larger) of c/10, which is one-tenth of the speed of light.
Then the correct option is C:
Relativistic velocity is of the order of 1/10th of the velocity of light
Answer:
load (l)=400N
Effort(E)=50N
mechanical advantage (MA)= load ÷Effort
(ma)=400÷50
(ma)=8
Explanation:
I copy pasted from the answer from the same question. Remember to first check if ur question is there
Answer:
v = 87.57 m/s
Explanation:
Given,
The initial velocity of the car, u = 0
The final velocity of the car, v = 60 mi/hr
The time period of car, t = 8 s
= 0.00222 hr
The acceleration of the car is given by the formula,
a = (v -u) / t
= 60 / 0.00222
= 27027 mi/hr²
If the car has initial velocity, u = 50 mi/hr
The time period of the car, t = 5.0 s
= 0.00139 hr
Using first equations of motion
<em> v = u + at</em>
= 50 + (0.00139 x 27027)
= 87.57 mi/hr
Hence, the final velocity of the car, v = 87.57 mi/hr
<span>No, xenon wont react with nitrogen.
This is because xenon is a noble gas and noble gases on</span>ly react with other elements under very unusual circumstances.<span>
I hope this has helped you.</span>