Velocity means speed, while force means the strength or energy when doing something
Answer:
27.22 m/s
Explanation:
Let the speed of clay before impact is u.
the speed of clay and target is v after impact.
use conservation of momentum
momentum before impact momentum after impact
mass of clay x u = (mass of clay + mass of target) x v
100 x u = (100 + 500) x v
u = 6 v .....(1)
distance, s = 2.1 m
μ = 0.5
final velocity is zero. use third equation of motion
v'² = v² + 2as
0 = v² - 2 x μ x g x s
v² = 2 x 0.5 x 9.8 x 2.1 = 20.58
v = 4.54 m/s
so by equation (1)
u = 6 x 4.54 = 27.22 m/s
thus, the speed of clay before impact is 27.22 m/s.
Answer:
1.81 x 10^-4 m/s
Explanation:
M = 98700 kg
m = 780 kg
d = 201 m
Let the speed of second asteroid is v.
The gravitational force between the two asteroids is balanced by the centripetal force on the second asteroid.


Where, G be the universal gravitational constant.
G = 6.67 x 10^-11 Nm^2/kg^2

v = 1.81 x 10^-4 m/s
Good morning.
We have that:

, since we have rest in the inicial time.
The acceleration can be found with Newton's Law:

Now we put the acceleratin in the velocity equation:

We want the force, so, let's isolate
F:
Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.