Answer:
Market value at 8% YTM $ 743.2156
at 10% YTM $ 619.6960
Explanation:
Assuming the face value is 1,000 as common outstanding American company's bonds:
Market value under the current scenario:
<u>Present value of the coupon payment:</u>
<u />
Coupon: $1,000 x 5% = 50
time 15 years
rate 0.08
PV $427.9739
<u>Present Value of the Maturity</u>
<u />
Maturity 1,000.00
time 15.00
rate 0.08
PV 315.24
PV c $427.9739
PV m $315.2417
Total $743.2156
If the interest rate in the market increaseby 2% then investor will only trade the bonds to get a yield 2% higher that is 10% so we recalculate the new price:
C 50.000
time 15
rate 0.1
PV $380.3040
Maturity 1,000.00
time 15.00
rate 0.1
PV 239.39
PV c $380.3040
PV m $239.3920
Total $619.6960
Giving a lower price than before
<span>The correct answer should be D. Negative punishment.</span>
Answer:
C. A contract between the corporation issuing the bonds and the bond trustee, who is acting on behalf of the bondholders.
Explanation:
A bond indenture specifies the contract which is between the bond issuers and bond holders. The contract specifies all the obligations owed by the issuers to the bond holders.
In this case the right definition of indenture would be a contract between the corporation issuing the bonds and the bond trustee, who is acting on behalf of the bondholders.
Hope that helps.
The bundle that is going to maximize profit is going to be Late
<h3>How to find the bundle that would maximize profit</h3>
we have the net profit from early to be 7 + 5 = 12
We have the net profit from late to 6 + 10 = 16
We can see that the value for late is greater at 16 compared to that of the early.
Hence we can say that late has the greatest profit.
Next we have to solve for the profit that is made. This is the net profit.
The solution is given as 16 - 12 = 4
<h3>What is profit maximization</h3>
This is the process where by businesses would try to get the best output possible from the given inputs that they would use in the business. It goal is to be able to maximize the returns that they would make.
Read more on profit maximization here:
brainly.com/question/13464288
#SPJ1
A) Divisibility can easily be divided into smaller value.