Answer:
<h2>2.44 L</h2>
Explanation:
The volume can be used by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we're finding the final volume

We have

We have the final answer as
<h3>2.44 L</h3>
Hope this helps you
Answer:
.
Start color: yellowish-green.
End color: dark purple.
Assumption: no other ion in the solution is colored.
Explanation:
In this reaction, chlorine gas
oxidizes iodine ions
to elemental iodide
. At the same time, the chlorine atoms are converted to chloride ions
.
Fluorine, chlorine, bromine, and iodine are all halogens. They are all found in the 17th column of the periodic table from the left. One similarity is that their anions are not colored. However, their elemental forms are typically colored. Besides, moving down the halogen column, the color becomes darker for each element.
Among the reactants of this reaction,
is colorless. If there's no other colored ion, only the yellowish-green hue of
would be visible. Hence the initial color of the reaction would be the yellowish-green color of
.
Similarly, among the products of this reaction,
is colorless. If there's no other colored ion, only the dark purple hue of
would be visible. Hence the initial color of the reaction would be the dark purple color of
.
Answer:

Explanation:
Molarity is found by dividing the moles of solute by liters of solution.

We are given grams of a compound and milliliters of solution, so we must make 2 conversions.
1. Gram to Moles
We must use the molar mass. First, use the Periodic Table to find the molar masses of the individual elements.
- C: 12.011 g/mol
- H: 1.008 g/mol
- O: 15.999 g/mol
Next, look at the formula and note the subscripts. This tells us the number of atoms in 1 molecule. We multiply the molar mass of each element by its subscript.
6(12.011)+12(1.008)+6(15.999)=180.156 g/mol
Use this number as a ratio.

Multiply by the given number of grams.

Flip the fraction and divide.


2. Milliliters to Liters
There are 1000 milliliters in 1 liter.

Multiply by 2500 mL.


3. Calculate Molarity
Finally, divide the moles by the liters.


The original measurement has 2 significant figures, so our answer must have the same. That is the hundredth place and the 3 tells us to leave the 7.

1 mole per liter is also equal to 1 M.

The question is incomplete, the complete question is:
Which statements are consistent with Dalton's atomic theory as it was originally stated? Why?
a. Sulfur and oxygen atoms have the same mass.
b. All cobalt atoms are identical.
c. Potassium and chlorine atoms combine in a 1:1 ratio to form potassium chloride.
d. Lead atoms can be converted into gold.
<u>Answer: </u>The correct options are b) and c).
<u>Explanation:</u>
Some of the postulates of Dalton's atomic theory are:
- All matter is made of very tiny particles called atoms that participate in chemical reactions
- Atoms are indivisible particles that cannot be created or destroyed in a chemical reaction
- Atoms of a given element are identical in mass and chemical properties
- Atoms of different elements have different masses and chemical properties.
- Atoms combine in the ratio of small whole numbers to form compounds.
- The relative number and kinds of atoms are constant in a given compound.
For the given options:
<u>For a:</u>
The statement is inconsistent with the theory as no two elements can have the same mass. Only atoms of the same element can have the same mass.
This is consistent with the theory as atoms of the same element are identical.
This is consistent with the theory as atoms combine in a simple whole number ratio.
The statement is inconsistent with the theory as atoms of one element cannot be changed to atoms of other element.
Hence, the correct options are b) and c).
Answer:
2.64 M
Explanation:
To find the molarity, you need to (1) convert grams to moles (via molar mass), then (2) convert mL to L, and then (3) calculate the molarity (via molarity ratio). The final answer should have 3 sig figs to match the sigs figs of the given values.
(Step 1)
Molar Mass (NH₄NO₃): 2(14.007 g/mol) + 4(1.008 g/mol) + 3(15.998 g/mol)
Molar Mass (NH₄NO₃): 80.04 g/mol
66.5 grams NH₄NO₃ 1 mole
--------------------------------- x ---------------------- = 0.831 moles NH₄NO₃
80.04 grams
(Step 2)
1,000 mL = 1 L
315 mL 1 L
-------------- x ------------------ = 0.315 L
1,000 mL
(Step 3)
Molarity = moles / volume
Molarity = 0.831 moles / 0.315 L
Molarity = 2.64 M