Answer:
Electrons on atoms have different amounts of energy proportional to the distance of their orbital from the nucleus. So in the flame, electrons get excited and pushed to higher energy levels by the heat energy. When they fall back down, they give off photons of light of different colors, based upon how far they fall.
Answer:
39.6 mL
Explanation:
Step 1: Write the balanced neutralization reaction
Ba(OH)₂(aq) + 2 CH₃COOH(aq) ⟶ Ba(CH₃COO)₂(aq) + 2 H₂O(l)
Step 2: Calculate the moles corresponding to 2.78 g of CH₃COOH
The molar mass of CH₃COOH is 60.05 g/mol.
2.78 g × 1 mol/60.05 g = 0.0463 mol
Step 3: Calculate the moles of Ba(OH)₂ needed to react with 0.0463 moles of CH₃COOH
The molar ratio of Ba(OH)₂ to CH₃COOH is 1:2. The moles of Ba(OH)₂ needed are 1/2 × 0.0463 mol = 0.0232 mol.
Step 4: Calculate the volume of 0.586 M solution that contains 0.0232 moles of Ba(OH)₂
0.0232 mol × 1 L/0.586 mol = 0.0396 L = 39.6 mL
Answer:
A. because the graph is moving uo
True, in space the tail of a comet will be cold since it a. doesnt have a hot core and b. are typically not found near the sun