<u>Answer:</u> The empirical and molecular formula of the compound is
and
respectively
<u>Explanation:</u>
We are given:
Mass of C = 3.758 g
Mass of H = 0.316 g
Mass of O = 1.251 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.078 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of C : H : O = 4 : 4 : 1
The empirical formula for the given compound is 
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

We are given:
Mass of molecular formula = 130 g/mol
Mass of empirical formula = 68 g/mol
Putting values in above equation, we get:

Multiplying this valency by the subscript of every element of empirical formula, we get:

Hence, the empirical and molecular formula of the compound is
and
respectively
According to the reaction equation:
and by using ICE table:
CN- + H2O ↔ HCN + OH-
initial 0.08 0 0
change -X +X +X
Equ (0.08-X) X X
so from the equilibrium equation, we can get Ka expression
when Ka = [HCN] [OH-]/[CN-]
when Ka = Kw/Kb
= (1 x 10^-14) / (4.9 x 10^-10)
= 2 x 10^-5
So, by substitution:
2 x 10^-5 = X^2 / (0.08 - X)
X= 0.0013
∴ [OH] = X = 0.0013
∴ POH = -㏒[OH]
= -㏒0.0013
= 2.886
∴ PH = 14 - POH
= 14 - 2.886 = 11.11
Answer:
Always equal to the total moles of the products.
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction equal to the mass of the reactants.
Answer:
Explanation:
No moraculos si a minha memoria não me trai acho temus 2tomos d carbono
1. 1086.04 mmHg
2.70.213 mmHg
3. 95.954 kPa
<h3>Further explanation</h3>
Pressure (P) is the force applied per unit area
Can be formulated :

P = pressure (SI=Pascal(Pa))
F= force applied (N)
A=area(m²)
The unit of pressure can be expressed in atm, mmHg, or Pascal


