Answer:
![C)\:\:\frac{\sqrt 2}{ 2 }](https://tex.z-dn.net/?f=C%29%5C%3A%5C%3A%5Cfrac%7B%5Csqrt%202%7D%7B%202%20%7D%20)
Step-by-step explanation:
![\sin \bigg( \frac{3\pi}{4} \bigg) \\ \\ = \sin \bigg( \pi - \frac{\pi}{4} \bigg) \\ \\ = \sin \bigg(\frac{\pi}{4} \bigg) \\ \\ = \frac{1}{ \sqrt{2} }\\\\= \frac{\sqrt 2}{ 2 }](https://tex.z-dn.net/?f=%20%5Csin%20%5Cbigg%28%20%20%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%5Cbigg%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Csin%20%5Cbigg%28%20%5Cpi%20%20%20-%20%20%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20%5Cbigg%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Csin%20%5Cbigg%28%5Cfrac%7B%5Cpi%7D%7B4%7D%20%5Cbigg%29%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%20%5Cfrac%7B1%7D%7B%20%5Csqrt%7B2%7D%20%7D%5C%5C%5C%5C%3D%20%20%5Cfrac%7B%5Csqrt%202%7D%7B%202%20%7D)
Yes the answer would be D
yes yhe ansdere would beD
yea answer d
To solve this problem and calculate the security's equilibrium rate of return, you should sum<span> the security's default risk premium (2.00%),</span> the inflation risk premium (1.75%), the real risk-free rate (3.50%), the security's liquidity risk<span> premium (0.25%) </span><span>and the maturity risk premium (0.85%). So, you have:
ij*=2.00%+1.75%+3.50%+0.25%+0.85%
</span> ij*=8.35%<span>
</span>