<h3>
Answer:</h3>
CuO(s) + H₂(g) → Cu(s) + H₂O(l)
<h3>
Explanation:</h3>
- Assuming the reaction is the reduction of CuO by H₂
- Then the balanced equation for the reaction is;
CuO(s) + H₂(g) → Cu(s) + H₂O(l)
- The equation shows the reducing property of hydrogen gas, such that hydrogen reduces metal oxides such as copper(ii)oxide to the respective metals.
- The law of conservation requires chemical equations to be balanced so as the mass of reactants will be equal to that of products.
- In this case; there is 1 copper atom, 1 oxygen atom and 2 hydrogen atoms on both side of the equation and thus the equation is balanced.
<h2>Answer:</h2>
5.65moles
<h2>Explanations:</h2>
The formula for calculating the number of moles the compound contain is given as:

Given the following parameters
Mass of Ag = 700grams
Determine the molar mass of AgO
Molar mass = 107.87 + 16
Molar mass = 123.87g/mol
Determine the moles of AgO

Hence the moles of AgO present is 5.65moles
Answer:
Mass = 547.02 × 10⁻²³g
Explanation:
Given data:
Number of atoms of Al = 122 atom
Mass in gram = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
122 atom/6.022 × 10²³ atoms × 1 mol
20.26× 10⁻²³ mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 20.26× 10⁻²³ mol × 27 g/mol
Mass = 547.02 × 10⁻²³g
Answer:
The bowling ball has more kinetic energy than the tennis ball
Explanation:
Using the formula 1/2 mass × acceleration we found that the tennis ball had a kinetic energy of 0.75 while the bowling ball had a kinetic energy of 10.5 hence the bowling ball has the ability to do more work