Answer:
The answer to your question is pH = 1.45
Explanation:
Data
pH = ?
Volume 1 = 200 ml
[HCl] 1 = 0.025 M
Volume 2 = 150 ml
[HCl] 2 = 0.050 M
Process
1.- Calculate the number of moles of each solution
Solution 1
Molarity = moles / volume
-Solve for moles
moles = 0.025 x 0.2
result
moles = 0.005
Solution 2
moles = 0.050 x 0.15
-result
moles = 0.0075
2.- Sum up the number of moles
Total moles = 0.005 + 0.0075
= 0.0125
3.- Sum up the volume
total volume = 200 + 150
350 ml or 0.35 l
4.- Calculate the final concentration
Molarity = 0.0125 / 0.35
= 0.0357
5.- Calculate the pH
pH = -log [H⁺]
-Substitution
pH = -log[0.0357]
-Result
pH = 1.45
<span>The answer is "D" where the number of collisions per unit area is reduced by one-half. Drawing back on the piston means the volume is increased. The pressure is reduced. There are fewer collisions when the pressure is reduced.</span>
Answer:D. Compound.
Explanation:
A compound is defined as a pure substance: formed when two or more elements chemically combine to form bonds between their atoms.
That would be 3.621471•10^3
Answer:
TRIAL 1:
For “Event 0”, put 100 pennies in a large plastic or cardboard container.
For “Event 1”, shake the container 10 times. This represents a radioactive decay event.
Open the lid. Remove all the pennies that have turned up tails. Record the number removed.
Record the number of radioactive pennies remaining.
For “Event 2”, replace the lid and repeat steps 2 to 4.
Repeat for Events 3, 4, 5 … until no pennies remain in the container.
TRIAL 2:
Repeat Trial 1, starting anew with 100 pennies.
Calculate for each event the average number of radioactive pennies that remain after shaking.
Plot the average number of radioactive pennies after shaking vs. the Event Number. Start with Event 0, when all the pennies are radioactive. Estimate the half-life — the number of events required for half of the pennies to decay.
Explanation: