C. The Bering Land Bridge once connected what would be Russia and North America but the the movement of these continents separated the land bridge
Answer:
DNA
Explanation:
DNA
Avery is best known for his 1944 discovery that DNA is the material of which genes and chromosomes are made.
Answer:
The colonies are carrying the resistance genes from plasmids
Explanation:
Bacteria can acquire beneficial characteristics that they didn’t have. One way for these is through plasmids, which ones are little fragments of DNA that usually contains resistance genes (for antibiotics, disinfectants, heavy metals, etc.) or other capacities, like the ability to use some substances (for example sugars).
In this specific situation, we already know that the plasmid carrying genes for tetracycline resistance and the <em>lacZ</em> gene.
A little explanation:
Tetracycline is an antibiotic that inhibits bacterial growth and kills the bacteria. The bacteria can “fight” to this antibiotic if it has a resistant gene, the result is that the antibiotic can’t affect the bacteria and survive. An analogy is like a Police Officer (bacteria) that have a bulletproof vest (tetracycline-resistant gene) so the bullets (tetracycline) didn’t affect the police.
In the case of X-gal, is a compound consisting primarily in one sugar called galactose. Not all bacteria can eat galactose, they need an enzyme called β- galactosidase (comes from <em>lacZ</em> gene) that helps the bacteria “eat” the sugar (cuts the sugar in little pieces so the bacteria can eat).
Then, as the bacterial colonies can grow in the medium with tetracycline and X-gal, we know that those bacteria are carrying the resistance genes for tetracycline (does not affect the bacteria) and the <em>lacZ</em> gene (bacteria produce β- galactosidase that cuts galactose). These genes are coming from the plasmids because we already know that the plasmid carries these genes and not from the exogenous DNA.
Answer: For reproduction. It carries out its function by transfer and receiving of pollen grains
Explanation:
In flowering plants, the pollen grains are transferred from the anther of one plant, and transferred to the stigma of the same plant or another.
This transfer leads to fertilization, and the formation of ovule (seed), followed by the development of fruits