Answer:
a) Θ = ω₀*t + ½αt² To complete first revolution 2π rads = 0*t + ½αt² and to complete the first and second combined 4π rads = 0*t + ½α(t+0.810s)² Divide second by first: 2 = (t + 0.810s)² / t² This is quadratic in t and has roots at t = -0.336 s ← ignore and t = 1.96 s ◄ b) Use either equation from above: 2π rads = 0*t + ½α(1.96s)² α = 3.27 rad/s² ◄ Hope this helps!
Explanation:
Answer:
v2 = 65 m/s
the speed of the water leaving the nozzle is 65 m/s
Explanation:
Given;
Water flows at 0.65 m/s through a 3.0 cm diameter hose that terminates in a 0.3 cm diameter nozzle
Initial speed v1 = 0.65 m/s
diameter d1 = 3.0 cm
diameter (nozzle) d2 = 0.3 cm
The volumetric flow rates in both the hose and the nozzle are the same.
V1 = V2 ........1
Volumetric flow rate V = cross sectional area × speed of flow
V = Av
Area = (πd^2)/4
V = v(πd^2)/4 ....2
Substituting equation 2 to 1;
v1(πd1^2)/4 = v2(πd2^2)/4
v1d1^2 = v2d2^2
v2 = (v1d1^2)/d2^2
Substituting the given values;
v2 = (0.65 × 3^2)/0.3^2
v2 = 65 m/s
the speed of the water leaving the nozzle is 65 m/s
Multiply 5 newton by each height. 1st is 5 joules, 2nd is 7.5, while 3rd is 10 joules.
Answer:
1960 J
Explanation:
EK = (18 kg + 62 kg)
/2 = 1960 J
Answer:
true
Explanation:
the sun warms the atmosphere and warms the air which drives our weather