I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
A force of 660 n stretches a certain spring a distance of 0.300 m. what is the potential energy of the spring when a 70.0 kg mass hangs vertically from it?
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes
-- The string is 1 m long. That's the radius of the circle that the mass is
traveling in. The circumference of the circle is (π) x (2R) = 2π meters .
-- The speed of the mass is (2π meters) / (0.25 sec) = 8π m/s .
-- Centripetal acceleration is V²/R = (8π m/s)² / (1 m) = 64π^2 m/s²
-- Force = (mass) x (acceleration) = (1kg) x (64π^2 m/s²) =
64π^2 kg-m/s² = 64π^2 N = about <span>631.7 N .
</span>That's it. It takes roughly a 142-pound pull on the string to keep
1 kilogram revolving at a 1-meter radius 4 times a second !<span>
</span>If you eased up on the string, the kilogram could keep revolving
in the same circle, but not as fast.
You also need to be very careful with this experiment, and use a string
that can hold up to a couple hundred pounds of tension without snapping.
If you've got that thing spinning at 4 times per second and the string breaks,
you've suddenly got a wild kilogram flying away from the circle in a straight
line, at 8π meters per second ... about 56 miles per hour ! This could definitely
be hazardous to the health of anybody who's been watching you and wondering
what you're doing.