Answer:

Explanation:
<u>Charge of an Electron</u>
Since Robert Millikan determined the charge of a single electron is

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 
Let's test the possible charges listed in the question:
. We have just found it's a possible charge of a particle
. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets
this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge
cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6
Finally, the charge
is four times the charge of the electron, so it is a possible value for the charge of an oil droplet
Summarizing, the following are the possible values for the charge of an oil droplet:

Answer:
22/0.50=44
Explanation:
average speed= distance / time
Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A or 4.0 x 10^0 A</span>
Answer:
9800 m
Explanation:
During acceleration, given:
v₀ = 0 m/s
a = 39.2 m/s²
t = 10.0 s
Find: v and Δy
v = at + v₀
v = (39.2 m/s²) (10.0 s) + 0 m/s
v = 392 m/s
Δy = v₀ t + ½ at²
Δy = (0 m/s) (10.0 s) + ½ (39.2 m/s²) (10.0 s)²
Δy = 1960 m
During free fall, given:
v₀ = 392 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (392 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 7840 m
Therefore, h = 1960 m + 7840 m = 9800 m.