Answer:
The bond energy of F–F = 429 kJ/mol
Explanation:
Given:
The bond energy of H–H = 432 kJ/mol
The bond energy of H–F = 565 kJ/mol
The bond energy of F–F = ?
Given that the standard enthalpy of the reaction:
<u>H₂ (g) + F₂ (g) ⇒ 2HF (g)</u>
ΔH = –269 kJ/mol
So,
<u>ΔH = Bond energy of reactants - Bond energy of products.</u>
<u>–269 kJ/mol = [1. (H–H) + 1. (F–F)] - [2. (H–F)]</u>
Applying the values as:
–269 kJ/mol = [1. (432 kJ/mol) + 1. (F–F)] - [2. (565 kJ/mol)]
Solving for , The bond energy of F–F , we get:
<u>The bond energy of F–F = 429 kJ/mol</u>
Answer:
10 m/s
Explanation:
The speed of a wave is given by

where
is the wavelength
f is the frequency
For the wave in this problem,
- The frequency is given by the number of oscillations per second, so

- The wavelength is

So, the wave speed is

Answer:
the imparting or exchanging of information or news.
Explanation:
I think the answer your looking for is chemical reactions
So, the speed of the ball after 2 seconds after free fall is <u>20 m/s</u>.
<h3>Introduction</h3>
Hi ! I'm Deva from Brainly Indonesia. In this material, we can call this event "Free Fall Motion". There are two conditions for free fall motion, namely falling (from top to bottom) and free (without initial velocity). Because the question only asks for the final velocity of the ball, in fact, we may use the formula for the relationship between acceleration and change in velocity and time. In general, this relationship can be expressed in the following equation :

With the following conditions :
- a = acceleration (m/s²)
= speed after some time (m/s)
= initial speed (m/s)- t = interval of time (s)
<h3>Problem Solving</h3>
We know that :
- a = acceleration = 9,8 m/s² >> because the acceleration of a falling object is following the acceleration of gravity (g).
= initial speed = 0 m/s >> the keyword is free fall- t = interval of time = 2 s
What was asked :
= speed after some time = ... m/s
Step by step :




So, the speed of the ball after 2 seconds after free fall is 20 m/s.