Explanation:
B. More mass results in less acceleration.
Answer:
C
Im not totally sure but that's what my science teacher taught me sorry if is wrong
Answer:
Force A=-−2,697.75 N
Force B=13, 488.75 N
Explanation:
Taking moments at point A, the sum of clockwise and anticlockwise moments equal to zero.
25 mg-20Fb=0
25*1100g=20Fb
Fb=25*1100g/20=1375g
Taking g as 9.81 then Fb=1375*9.81=13,488.75 N
The sum of upward and downward forces are same hence Fa=1100g-1375g=-275g
-275*9.81=−2,697.75. Therefore, force A pulls downwards
Note that the centre of gravity is taken to be half the whole length hence half of 50 is 25 m because center of gravity is always at the middle
The speed of a electron that is accelerated from rest through an electric potential difference of 120 V is 
<h3>
How to calculate the speed of the electron?</h3>
We know, that the energy of the system is always conserved.
Using the Law of Conservation of energy,
U=0
Here, K is the kinetic energy and U is the potential energy.
Now, substituting the formula of U and K, we get:
=0------(1)
Here,
m is the mass of the electron
v is the speed of the electron
q is the charge on the electron
V is the potential difference
Let
and
represent the final and initial speed.
Here,
=0
Solving for
, we get:


=6.49
m/s
To learn more about the conservation of energy, refer to:
brainly.com/question/2137260
#SPJ4